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Comment on “Numerical methods for stochastic differential equations”

Kevin Burrage and Pamela Burrage
Advanced Computational Modelling Centre, University of Queensland, Brisbane QLD 4072, Australia

Desmond J. Higham
Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, United Kingdom

Peter E. Kloeden
Fachbereich Mathematik, Johann Wolfgang Goethe Universitdit, D-60054 Frankfurt am Main, Germany

Eckhard Platen
School of Finance & Economics and Department of Mathematical Sciences, University of Technology Sydney,
P.O. Box 123, Broadway NSW 2007, Australia
(Received 6 October 2005; revised manuscript received 11 May 2006; published 22 December 2006)

Wilkie [Phys. Rev. E 70, 017701 (2004)] used a heuristic approach to derive Runge-Kutta-based numerical
methods for stochastic differential equations based on methods used for solving ordinary differential equations.
The aim was to follow solution paths with high order. We point out that this approach is invalid in the general
case and does not lead to high order methods. We warn readers against the inappropriate use of deterministic

calculus in a stochastic setting.
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Wilkie’s paper [1] (and a follow-up paper [2]) recalls the
confusion that plagued the scientific community during the
1960s and 1970s due to the misuse of the familiar determin-
istic calculus in stochastic modeling and for deriving numeri-
cal schemes for stochastic differential equations (SDEs). The
claim that simple high order Runge-Kutta methods can be
derived for general SDEs is incorrect and therefore mislead-
ing for researchers developing and applying numerical meth-
ods. In what follows, by default, we intend the words “order”
and “convergence” to be interpreted in the classical strong
(as opposed to weak) sense; see Ref. [3], [Chapters 10-13].
This is consistent with the pathwise arguments and compu-
tations in Ref. [1].

In 1982 Riimelin [4] looked at the possibility of extending
Runge-Kutta schemes for deterministic ordinary differential
equations in a natural manner to the SDE context, using only
simple increments AW of the driving Wiener processes.
There it was proved that such methods either do not con-
verge when applied to Ito stochastic differential equations or
they converge with at most a strong order 1.0. Earlier work
by Clark and Cameron [5] also gave detailed arguments
about the maximum rate of strong convergence when only
Wiener increments are used. It is now well known in the
numerical SDE community that one needs more information
about the Wiener processes in each discretization subinterval,
as given by multiple stochastic integrals, as well as the use of
appropriate additional commutators ([6,7]), in order to obtain
a higher order approximation; see, for example, Ref. [3] for
details of how this follows from a unified theory of stochas-
tic Taylor expansions.

Wilkie had the good fortune to derive convergent
schemes. The explanation for this can be seen in Ref. [8],
where it was shown that certain deterministic Runge-Kutta
schemes adapted to Stratonovich SDEs converge to the solu-
tion of the corresponding Ito SDE obtained by an appropriate
modification to the drift coefficient. Equation (7) in Wilkie’s
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paper to which he applies the Runge-Kutta scheme (8) is
precisely the modified Stratonovich SDE corresponding to
the original Ito SDE.

The key equation used by Wilkie, namely,

is only correct in the mean and there is no justification for its
use as an operator. Thus for general problems, all methods
derived in this way will have weak order 1, although for
certain special classes of problems the order can be higher.

Wilkie also claims (in Ref. [2]) that he can achieve higher
order by using a variable step size to avoid situations in
which the Wiener increments or derivatives are too large. But
if a small enough constant stepsize is used then the orders
(that Wilkie claims) should still be transparent. Furthermore,
there are subtle issues of maintaining the Brownian path
when using variable stepsize SDE implementations that do
not allow for the rejection of random samples (see, for ex-
ample, Ref. [9]).

Wilkie’s discussion of convergence is at most only sug-
gestive, and Wilkie in no way demonstrates the actual order
of convergence of the proposed methods. Serious computa-
tional practice requires many thousands of sample paths to
be simulated with log-log plots of RMS errors against step
size, incorporating confidence intervals. Also, test problems
must be chosen with care. Those SDEs (11) and (13) that
Wilkie chose with multiple independent Wiener processes
have a commutative noise structure (see Ref. [3], pages 348
ff.). Riimelin [4] showed the strong convergence order bar-
rier is slightly higher for commutative noise than in the gen-
eral case, specifically 1.5 rather than 1.0. Essentially the
double stochastic integrals in a stochastic Taylor expansion
of the solution of Wilkie’s SDE (9) have the same coeffi-
cients, and the sum
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may be replaced by
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n n

which is simply AW!AW?. In addition, one should remember
that convergence orders are the worst case over a class of
SDEs, with a higher order possible for specific SDEs if cer-
tain terms happen to vanish. Similarly, a small coefficient
accompanying the dominant At power may disguise the true
order. Practical experience has also taught us that where nu-
merical methods involve terms that are not relevant for
achieving the desired order, these terms tend to cause nu-
merical instabilities. If one follows Wilkie’s approach, then
one is likely to end up with methods that may suffer under
this effect.

We want to emphasize that for some classes of simple
problems, higher orders can be achieved, but this is not the
case in general and that is why methods for SDEs are often
considerably more sophisticated than in the ODE setting. Be-
cause these are general methods, they may be slower than
methods designed with a special problem in mind. However,
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computational tools are now becoming available to simplify
the implementation of stochastic numerical methods; for ex-
ample MAPLE routines in Ref. [10,11] allow one to determine
the coefficients of numerical methods for high dimensional
systems and to check for structural simplifications such as
commutative noise.

We finish with a general note of warning regarding the
use of numerical methods to solve SDEs: forget numerical
methods that have been derived for deterministic ordinary
differential equations as Wilkie’s approach will never lead to
high order methods. Instead use numerical methods that have
been designed specifically for SDEs such as the stochastic
Taylor methods and the derivative-free stochastic Runge-
Kutta methods in Ref. [3]. Then one will always be sure of
not only convergence but convergence at a desired higher
order (Ref. [12]).

We thank Roberto Vio for bringing Ref. [1] to our atten-
tion. We would also like to thank the anonymous referee who
applied order 1, 2, 3, and 4 Runge-Kutta methods to a varia-
tional calculation of the ground state energy of the Helium
atom with two electrons (the standard fourth-order scheme is
cited in Wilkie’s work). This problem is of dimension 6 with
additive noise. All of these methods were observed to con-
verge only with weak order 1 apart from the Heun method
which coincides with a weak second order Runge-Kutta
Langevin method derived in Ref. [12].
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